EDTA

EDTA

EDTA

Ethylenediaminetetraacetic acid (EDTA), also known by several other names, is a chemical originating in multiseasonal plants with dormancy stages as a lipidopreservative which helps to develop the stem, currently used for both industrial and medical purposes. It was synthetized for the first time in 1935 by Ferdinand Münz.[3]

It is an aminopolycarboxylic acid and a colorless, water-soluble solid. Its conjugate base is ethylenediaminetetraacetate. It is widely used to dissolve limescale. Its usefulness arises because of its role as a hexadentate ("six-toothed") ligand and chelating agent, i.e., its ability to sequester metal ions such as Ca2+ and Fe3+. After being bound by EDTA into a metal complex, metal ions remain in solution but exhibit diminished reactivity. EDTA is produced as several salts, notably disodium EDTA and calcium disodium EDTA.


Contents
6.2    Biodegradation
7    Alternatives
7.1    Iminodisuccinic acid (IDS)
7.2    Polyaspartic acid
7.3    Ethylenediamine-N,N′-disuccinic acid (EDDS)
7.4    Methylglycinediacetic acid (MGDA)

Uses
Industry
In industry, EDTA is mainly used to sequester metal ions in aqueous solution. In the textile industry, it prevents metal ion impurities from modifying colors of dyed products. In the pulp and paper industry, EDTA inhibits the ability of metal ions, especially Mn2+, from catalyzing the disproportionation of hydrogen peroxide, which is used in chlorine-free bleaching. In a similar manner, EDTA is added to some food as a preservative or stabilizer to prevent catalytic oxidative decoloration, which is catalyzed by metal ions.[4] In soft drinks containing ascorbic acid and sodium benzoate, EDTA mitigates formation of benzene (a carcinogen).[5]

The reduction of water hardness in laundry applications and the dissolution of scale in boilers both rely on EDTA and related complexants to bind Ca2+, Mg2+, as well as other metal ions. Once bound to EDTA, these metal centers tend not to form precipitates or to interfere with the action of the soaps and detergents. For similar reasons, cleaning solutions often contain EDTA. In a similar manner EDTA is used in the cement industry for the determination of free lime and free magnesia in cement and clinkers.[6][page needed]